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To prove (i), we note that as m = 2p,

a =2qg,"°

P+1 P

and 2ap‘= % + St =0 (mod kp),

from (2.9). Tk, =9, f@ orf(~ ) nas solutions, but not both. 1 k >2,
let lc/J = v or 9v, accordipg as it is odd or even. Ineither case visa
divisor of e, and of # —Auja, and therefore of n.  Also v € e, < Vn
Again, Irp is not a multiple of 43 for if it be equal to 4V, 4p
is a multiple of 2’ and therefore even, making » a multiple of 4,
which cannot be, as # has no square factors. Hence k/, is a ¢, and
£ (ko) or £ (= Ep) has solutions, but not both.

To prove (iii): First let kl, > 9, and equalto v or 3v. :
divisor of #, it is a divisor of ap- Write ap = cv,

(Vi + ev) (\:z—cv)= E _ &

o~
and (Vn+up+,)(4n—a W=k 0 Fort
From (2.2),
\n—up =4n + ov—k [(Vn +0U)/7r ]
or ap‘_l=—av+k/J [(vn—av+20v\/kp]

Now k5 > Va—cv > 0; and v is a multiple of ko whether
kp is v or 2v. Hence
[Ve—cv+ ‘zov);’kl_,]= 200/ ky
Cpr1 T —c¢v+ 2cv = oV =ag
giving kp+1 = kp—l ete., kzp = 1l,and m = 2p.

and

Seoondly: Letk = 2. The same argument applies and the same

conclusions follow. kp is theretore the turning point and m = 2p for

all ¢.
4. There is no general method of ascertaining, without calculating
the o’s and the k's, which of the 49 + 3 equations has a solutiop but fr
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tion,—can be obtained by treating the equation as a congruence and
by applying the theory of quadratic residues.

To take a simple illustration, let it be required to find the values of _
k (k= —1, =9 =3, % 6)for which .

22— 1597 = k '
can be solved. With the usual notation for the quadratic residue
character of a number with respect to another, we have
(#/8)=+1and (&/5) = +1
excluding k= —1, = 2, =3. If k is even, but not divisible by 4,
2 and y are odd, and :
k=24 ¢ =2 (mod. 8)

excluding =z = 6. The remaining number, — 6, must furnish solutions.

5. The method of treating the equation 2s a congruence gives the -
following results when % isodd, and k= —1, 2, or — 2

() If f£(—1) has solutions, & = 1,015 ;
T (@) I (9 hassolutions, n = T; (mod. 8)
(i) If f(—%) has solutions, n = 3

these conditions being necessary, but not sufficient. If however » is a’
prime, it has no factors < Vu, and the 49+ 8 equations of § 3 reduce to
7(=1), (2, f(--2. As one of these must have a solution, the above

conditions are also sufficient.

If uis not a prime, f{k) is possible only if k is a quadratic residue
of every odd prime factor ot , and « is a quadratic residue of every odd
prime factor of % Confining ourselves to k= — 1, 2, —2, we see
that

() If f(—1) bas solutiors, every odd factor of # is of the form
ipt+1;

(i) If £(9) has soluticns, every odd factor of n is of 'the form

p = 1; , '

and (iii) 1f 7(—9) has solutions, every odd factor of = is of the form _— ’
8p+ 1or8 +3., ’ o

% “These conditions are however nol sufficient.



Some’ Diophantine Egquations. 267

6. We have somewhat similar results if » = 2N

from 22 —2Ny? = —1, weget N=1ord;
from a?— ANy*= 2, weget N=1or7 (mod. 8)
“and  from 2?—2Ny® = —2, weget N=1 or 3

as conditions that are necessary but not sufficient in general. If however
N is prime, » = 2N has again no odd factors < vz, and one out of
(=1, £(2) and f( ~2) must have a solution. The above conditions are
now sufficient; except when D =1 (mod. 8), which case is not settled
by this analysis.
- 7. 1f N=1 (mod. 8), we have
N = a? + 16 6* ] n=208N=(a+ 487+ (a —48) ‘
= +8d = (4 + 2

W (1)
297 — 12 = (297 — 2»® |

where a, ¢, g, h are odd, and a, 8, ¢ d, are unique, while g and &
have a limited range of values. In all cases, we may write

o= A*—kB
whers k= —1, —% or 2 and B is odd.
We fﬁrther re-call the fact that every factor of
. P? — kQ3,
(where P and Q are prime to each other, and k= ~1, = 2 or 2)can

be expressed in the same form in one or more ways.

8, Let the solution of f(k), where k = —1, — 9, or 2 be given
" by #and y, so that

2 — nyz = k,

wand y being prime to each other. As y is a factor of »” — k, we may put
) y= A=kt = O+ VR ) (0 —VE )
where (A, «) may bave more than one set of values, and may be positive

.or negative.
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P—k=ny® = (A2 —kB) (N2 — kp?P
=A+BYRHO + u VEEA—BVH(A—u VB
"= (A4 BVE(AE+ Eu® + 22 u V) X the conjugate factor
=[A (A2+ku)+9B A ukl?—k (BN HEud)+2A A ul?
= X?—kY? (say) . 8.1
There will, in general, be several sets of values. of (X, Y) according to

the values and the signs of A, B, N, x; but as (3.1) isan identity, we
must bave at least once Y? = 1.

For this value of y
BA +trud+t2AAu==1
or (B + Auf—(A*—kBY) uf= =B
or E—pni= =B .. 89
AsBis odd, £isodd; £2 =1 (mod.8). Alson=2, (mod. 8); it follows

that .
== [B—wpl==(l—2)==%1 v (83)

whether 4 is odd or even. If b be a prime factor of B, (8.2) requires
that (3N/b) = + 1, and (= B/N) = 1. The reader may prove, or verify,
that these conditions also reduce to (8.3).

For f(#) to have solutions, it is necessary but not sufficient that
(8.3) should be satisfied. In other words f(k) has no solutions if
B= % 3 (mod. 8).

9. This can be translated in terms of o and 8.

() When k= —1, B=a + 48 or a —468;B= =% 3 ig
. equivalent to
a = = 1 with & even
or o = % 3 with 8 odd

(the modulus being 8). f{—1) has no solutions in these cases, but may
have solutions otherwise. W 0.1
(i) whenk = —2, B=¢; and 0% —84* = ¢! — 16 ¢3,

Every factor of a*—8d” is of the form 8p=1; therefore ¢+4/
is of that form. If ¢ = = 3 (mod. 8), £ is odd.
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Hence f(— 2) has no solutions if 8 is odd, but may have solutions
if 8 is even. e (9.9

(i) When k=9, B=%; and
a? + 1?2 = 2¢% + 16A% = g (mod. 16), as g is odd
.80 . a = =1 (mod.8), if h is of that form, N

and a = = 3 (mod 8), if & is of that form.

Hence f(2) has no solutions if o = = 3 (mod. 8), but may
have solutions otherwise. e (9.3)

10. Putting (9.1), (9.2) and (9.3) together and remembering that
one of the three equations must have a solution, we obtain the follo wing

THEORAM! Of the three equations
a* — 2Ny = &,

where k= —1, — 2, or 2, and N is a prime number of the form
8p -+ 1, and therefore equal to a* + 16 8%

() %= —1 alone gives solutions if & = 8; * 3 and 5 is odd,
(i) %k = —2 alone gives solutions if a. = 8 = 3and 8 iseven:
(iii) & = 2 alone gives solutions if a'= 8, = 1and 8 is odd,

and any one, but not more than one, may have solutions if a = 85 = |,
and £ is even.
11, I find, by actual calculation, that for all primes of the form

N=(3; = 1 + 642
up to N = 3761,

@ f(=1) has solutions for

N = 113, 1201, 1601, 1777, 2113, 3089, 3121, 3137, 3313, 3761 ;
(@) f(~2) has solutions for

N = 257, 1158, 1217, 1533, 2593, 2637, 2689, 2833 ;

(i) f(9) has solutions for
N = 837, 353, 577, 593, 881, 1249, 1889, 2129, 3317, 3361,




Miquel points and Circles and
Centre-circles of a system of lines*

By V. RAMASWAaM{ AIYAR AND M. BHIMASENA Rao.

1. Introduction.—Let us consider a system of co-planar lines
which are such that no two of them are parallel, and no three concurrent.
Taking four such lines, we know that the circum-circles of the four
triangles which they form, are concurrent at a point (M,), called the
Miquel point of the lines. We also know that the centres of these
circum-circles lie on a circle (C4) which is called the centrs cirels of the
lines. These theorems stand at the apex of two known series of
theorems 1, one relating to Miquel points and circles, and the other to
centre circles of  lines, (» > 4). The first of the series may be enun-
ciated thus :(—

(a) With any odd number n of lines, (=5, 7, ...) there is associa-
ted a circle, called the Miquel circle (M,) of the lines, which
passes through the » Miquel points (M,_,) of the lines taken
in sets of n— 1.

(» With any even number # of lines, (n=6,8,...) there is
associated a point (M,), called the Miguel point of the lines
through which pass the » Miquel circles of the lines taken
in sets of n—1.

The second ceries of theorems may be stated thus :—

Given n lines (n = 5,6, 7, ... ) the « centre circles (C,y) of
these lines taken in sets of »—1 at a time are concurrent at
a point (P,); and further the centres of these n centre circles
(C,y) lie on a circle (C,), called the centre circls of the
lines.

9. These theorems are proved here analytically in a new manner,
in which the circles ars expressed in the form of determinants, and the
points in the form of matrices.

# Read at the Fifth Conference of the Indian Mathematical Society held at

Bangalore in April 1926.
+ Vide Coolidge : Treatise on the Circle and the Sphere (1916) PP, 90—g2,
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The following principle in the theory of determinants is chiefly
employed :(—

If, in a matrix containirg # columns, and » + 1 rows two of the
determinants ot the uth order contained in the matrix vanish, then all the
determinants ot the nth order contained in the matrix vanish,—provided
that in the matrix (of » columns and # — | rows) which is common
to the determinarts,the contained determinants of the n—1th order do
not all vanish. It is hardly necessary to add that in this statement
we may interchange the words ‘' rows " and ‘' columns.”

3. The circum=circle of three lines and the Miquel point of four lines.

Referred to a triangle ABC, let the lines of the system be
L=la+mB+aYy=0 (r=123..)

Let the result of substituting the co-ordinates of the circular points
I, Jin L, be denoted by =,, v,.

Taking the lines L, L,, Lg, the equation of the circum-circle of
the iriangle formed by them is at once written in the form

1 L L

| = pe) 1 i

‘ Ty Y1
Ly La =0 .. (31
3 e
23 Y3 !

for, this represents a conic which passes through the intersection of the
lines as well as through the circular points I (zy, @, ;) and J (y3. ¥4, ¥4)

Similarly the circumcircle of the triangle formed by the lines
Ly, Lo, Ly is

s Lo
-1 Y
Ly L, z
@ s =0 .. (3.2
L L
4 _4 1

Ty Y
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These circles intersect in two points one of which is (I, Ly). Denote
the other by My. The determinants (8.1) and (3.2) vanish for both these
points.

Consider now the matrix common to (3.1) and (3.9), viz.

oL L

& KA1
| Ll I [ . (33)
: =2 == 1|

T Ya

The determinants of the second order contained in this matrix vanish
for the point (L;L,) and for that point only, and do not vanish tor the
point M,. Hence by the principle in § 2, all the determinants of the
third order contaized in the matrix :—

‘ L, L, q |

| ay ¥1 i

4 I:‘% Li’ 1

" noo B . (34)
Lo L,

} a3 Y3

j Ls L_‘ 1
Ty Ya

vanish for the point My, showing that the circum-circles of all the four
triangles formed by L,, L,, Lg, L, are concurrent at My,

4. Miquel circle for five lines and Miquel point for six lines.

Taking the matrix (3.4) which represents the Miquel point of four lines
Ly L, Lg, Ly and dividing the rows by #y, #,, #3, 4 We have the matrix

L, L, 1 i
\ Wl” 1Y L3} i
b | SRY:
J XL e "
"‘ Ly L, 1

7Y @494 L
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whose determinants of the third order all vanish for the} Miquel point
My  Hence the determinant

L L 1 1
| -2 2 z1Y1 1 A1
(4.9)
L L 11
X #1Ys N Ya |

vanishes for My, asis obvious by expanding the determinant in terms of
the elements of the last column. Again taking the matrix (3.4) and
dividing the rows by ¥, yay ¥s ¥4, We have the matrix

| L 2
" 1% 1/12 Y
! o ! 3
i - !
S PR R S
PR TR

whose determ’nanis of the third order vanish for My. Hence the determi-

nant
Ly L, 1

1
H 291 Y 2y Y1
(4.4)

Ly L, 1

X1y Y4 g Y4

et

vanishes for My as is obvious by expanding in terms of the elements of
the third column.

From (4.2) and (4.4) we conclude by means of the principle
35
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in§2, that all the determinants of the fourth arder contained in the matrix
| L, L L 1 1|
1 N Y1 3'12 ) Y1

e (45)

e e “ee "

!
I
! /

[E
ll L, L, Ls 1 1
fb‘f 244 :1/42 29 Ye

vanish for the point M.

To justify this conclusion, we have to be sure that not all the detet-
minants of the common matrix of (4.2)and (4.4), namely of,

' L1 1

&1y £a ] N

1

|
|¢ L, 1

I
!l )
i

X4Y4 &y Ya B

vanish for the point My, The determinants in this matrix all denote the
line at infinity, and hence do not vanish for the point My,

The original matrix (3.4) for the Miqguel peint M, has thus been
transformed into a new matrix (4 5) denoting the same point. Such a
transformation, it will be seen, occurs at each stage of our demonstra-
tion.

5. Take now a fifth line L; and consider the determinant

L, L, I, 1 1
'”12 Y ?/12 1 Y1
L, L; L 1 1
I 2 L5Ys ?/52 a5 Ys

Expanding in terms.of the elements of the last row, we see that the
determinant (5.1) represents a locus passing through the Miquel point M,
of the lines L,, Ly, Ly, Ly.  In like manner, the locus passes through
all the Miquel points of L,, Lg, L, Ly, L; taken in sets of four,



Mique? points and Circles and Centre-circles, &c. 273

The locus represented by (5.1) is apparently a cubic. But it is
shown below that it breaks up into the line at infinity and a circle; conse-
quently we infer that this circle, call it M., is one passing through the
five Miquel points ot the lines L, L,, Lj Ly, L;, taken in sets of
four. It is the Miquel circle of the lines.

To show that (5.1) breaks into the line at infinity and a circle, let
the triangle of reference be AIJ, where I, J ‘are the circular points. The
co-ordinates of I, ] can now be taken as (0, 1,0) and (0, 0, 1). The
result of substituting the co-ordinatesot I, Jin L, = l.a. + m 8 + .Y,
is m,, n, respectively. Hence @, = m,, y, = 5, and (5 1) takes the
form

ha+m8 + a7 La+mf +aY ha+tmb+ny 1 1
'Inl‘d ! myny ! ”1” ! ﬂll' ny

Lo 4+ ms8 + Y Lo+ md +aY Latmb+ny 1 1)

| ms* ’ m;n; 57 ' msI ns)
v (5.9)
which easily reduces to
Lo+ aY la Lo+ m,8 1 1 j
my® ’ mln;' 0y ! -mly 7 |
lsa + a5 ;o 50+ w8 1 1 “
ms® ! s n,; n;® ! ms n;

Thus @ is a factor of the determinant, that is, the line at infinity is
part of the locus, Taking O out, the resulting determinant which is
of the second degree vanishes for a =0, Y = 0; {that is, for 1) as well
asa =0, 8 =0 (that is, for J)» Thus the locus (3.1) is shown to
coneist of the line at infinity and a circle Ms.

6. Taking a sixth line L, we can now deduce from (5.1) that the
six Miquel circles of the lines taken in sets of five are concurrent at a
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point for which all the determinanis of the fifth order contained in the
matrix i—

| L, L; L I 1 |
-’71;1 ';? Ty Y1 ’

. 61)

L, I-:u L; 1 1
T T TR
vanish. This matrix therefore represents the Miquel point, Mg, ot the
six lines,
7. Miquel circle of seven lines and Miquel point of eight lines.

To obtain the Miquel circle of seven lines, we first transform the
matrix (6 1) into the matrix

Py Ly In Ly 11 1
|2 i ey’ e e ay oy ‘
4\ . . 1 an
“V o . - e e l
1 L Lo Ls Le L 1 1
l‘ T S A T

by proceeding as follows :—

We first divide the rows in (6.1) by @,, mg, +.v @ respectively and
adding a columa whose elements are

we obtain the determinant

L L L1 i1

! z®  o'n myy e’ Y1 v,

‘\ .9
i L Ly Le 3 1

|
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which vanishes for the point M, in question. Then we divide the rows
of (6.1) again by y;. ys, «us +ee ¥ respectively, and add a column whose

elements are
1 1 L
2

PETTIETY 3

¢ Ly L, L, 1 1 1

] 312?/1' zy,” n* 213' LSV ?Ilg ‘

| e
| " Le L 1 1 ~

[ I — el 2 - s

oxYe .4 Ye zy ZeYo Yy

which also vanishes for the Miquel point Mg From (7.2) and (7.3),
using the principle stated in  §2, we obtain the form (7.1) for the
Miquel point M.

Taking now a seventh line L;, we now see that the seven Miquel

points of the lines L}, Lg, ... .. . L; taken six at a time lie on the curve
[ T ¥} L, L, 1 1 1
=t S5- o oy , 5|
(31 1Y 2141 ¥ Ty T1%1 N I
e e .. v cee vee ;a 0
1 L L, Ly 1.1 1 .
L2 ey e w® e myt gt L4

By referring to the triangle AlJ, the above is seen to be the line at
infinity taken twice and a circle M;, which passes through the Miquel
points of the seven lines taken in sets of six, and is therefore the Miquel
circle of the seven lines..

8. Taking now an eighth line, Ls. we infer that the eight Miquel
circles of thelines taken seven ata time are coucurrent at a point Mj for
which all the- determinants of the seventh order contained in the
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matrix
Ly I, L,
) 2 2
%y 1Yy 1Yy
! Ly Ls Ly
Bl 2 3
zg" r37Ya ﬂk:yaz
vanish.

9. With additional lines we proceed similarly.
L,, will be represented by the matrix,

of 2n lines Ly, Liss oee voe
L, L,
el weg
o N
} f
‘ =R
Tan

containing 26 rows and 9n — 1 columns,

ed into the matrix

Tam1

Yom

[ Ly L,
n n—1 see
l @y LTS

L, 1 1 1
'’ @y’ k3] i
" R R V)
Ly 1 1 1
ya'“‘ z5? L3Ys yaz

1

U2n

containing 2« rows and 2z + 1 columns.

Hence the matrix represents the Miquel point Mg.

The Miquel point

n—2 H
Y2 )
v ©01)

This matrix is transform-

The Miquel circle of 26 + 1 lines is given by

Ly
n=3
7

e

L
L
z

1 1
A=l 't n~1
o n
9.9)
e wee eee
1 1
= =
1 1
. (9.3)

this equation representing the Miquel circle M,y and in addition the
line &t infinity repeated # — 1 times,
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THE CENTRE CIRCLE.

10. The centre of the circum-circle of three lines.

We saw that the circum-circle of the triangle formed by three lines
T Ly, Ly was

L L,
) Y1
L
L. = =0 e 100)
s Ya
Lg Lj 0
T3 Ys !

The centre of the circle is the point of intersection of the tangents
toitatIand J,

The tangent at I (z,, @, 23) is seen to be

L, 1 1
@ &y Y
Lo 1 1
—5 — — =0 e (10.9)
Ty z, Yo
Ly - 1 1
7«32 T3 Ys

Similarly the tangent at J is

L, 1 1
o’ 3 Y1
L, 1 1
_92 & = =0 we (10.3)
Yo Lo Y
Lg 1 1
= ~ 3
Ys T3 LE]

Hence for the point of intersection of these tangents, that is for the
circumcentre, say O,, al] the determinants of the third order contained in
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the matrix )
I L Li 1 1 ‘
i 2 72 o iy |
| (31 Y1 ey N
| L L 11 e (109
j @37 Y L) Y2 \
i |
L, Ls 1 1 i
3 o2 i "~ !
By Y3 3 EE]

vanish, The matrix thererfore represents the circum-centre Og.

The centre-circle of four lines.

Taking now a fourth line L j, we see from (10.4) that the determinant

L, L, 1 1 |
—3 3 - |
@) K29 Ty 41 |
| v (105)
Le La 1 1|
T 3 s - |
E2) Ye @ Y4

represents a locus passing through the circum-centre of the triangle
formed by the lines I.;,L, L5 as is obvious by expanding in terms of the
elements of the last row. In like manner the locus passes through the
circuni-centres of all the triangles formed by the lines L., Lo Ly Ly
The locus also passes through T and ], and is of the second degree. It
therefore denotes the centre-circle Cy of the lines Ly, L,, Ly, Ly.

11. Matrix for P..

Taking a fifth line L;, the equation of the centre-circle of the lines
L, Lo L, L; will be

j L, L, 1 1

A

‘; L, ., 1

e 2 m on

1 Ls L, q 1 =0 .. (11.1)
“;:2 ?;32 ;3 Ys |

I
sIr
B
® (.
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The centre circles (10.5) and (11.1) intersect at the circum-centre Og of
the lines L,, L,, L3, and in one other point, call this Ps.

The matrix common to (10.5) and (11.1) is

L, L, 1 1.

z? oyt om0
Ly Lg 1 1
ag? s @3 Ys

the derminants of the third order of which vanish tor Og [see (10.4)], and
tor Og only. It follows by the principle stated in §2, that for the
other point of intarsection P;, all the fourth order determinants contain-

ed in the matrix

f Ly L, 1 l |
\ o, .‘Ile 8y 41

(1)
‘ LoL 1

s’ ¥ & ¥s

vanish. Hence we infer that in a system of five lines all the five centre
circles C4 are concurrent at a point P given by the matrix (11.9).
12, In §4, we saw thatall the determinants of the fourth order

contained in the matrix (4.5), namely,

L, L, L 1 1
22 ey, owmt m %0
e s . i‘
L, L, L, 1 1
1 mlz. a"lg“' y,;z :M' Ya t

vanished for the Miquel point Mg One of these determinants is (11.1)
36
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denoting the centre-circle. Hence we see that the centre-circle Cy of four
lines passes through the Miquel point My—a well-known property.

Again, in § 5 we saw that the Miquel circle of five lines is given by

L, L, L, 1 1
a? ¥ v , 31
- .
L, L. L; 1 1
z;? @3Ys Ys 5 Ys

Expanding in terms of the elements of the second column and
noting that each minor determinant in the expansion vanishes for the
point P; determined hy the lines, we conclude that

in a system of five lines, the point of coucurrence, Ps, of the five
centra-circles of the lines taken four at o time, lies on the Mequel circle
M,

‘We believe this thearem to be new.

13. The centre, 0,, of the centre circle, C,, of four lines,
The centre circle of four lines (L, Ly, Ly, Lq) is given by
L, L 1 1

wooowon
-
.-
L. L, 1 1
o v o owm

Its centre will be the point of intersection of the tangents to it at I and J
Denoting the determinant by A, the tangent at 1 (), g, @, 24) is given
by

aA LAY dA dA

Tt mar, e, tagr = O

f 4L,

Expanding A in terms of the elements of the first row, and denoting

L, L
the minors of —3, —s by Aand B,
# CORNS 1
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we get
A= A 1 +B Ly } + terms not conttaining L.
i‘/
dA _ A, Bz
4=
* AL, dL, @ ‘.‘I)2
e ia A Ba,
o EzldL zw1+2y12
1 L, 1 1 |
o, N Y 31 I
. . |
1oLo11 s
by !/42 L2 Y4
L, 2 1 1 \
2 2 - -
@ 1" Ty n
+ . -
L, @y 1 1
= = hd ol
Ty Ya Ly Y4

The first of these vanishes, Hence the equation of the tangent at 1
becomes

L, oy 1 1
z)? ;? 1 Y1
=0 .. (131
Ly N 1 1_
af 94 &y v
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Dividing the rows by @, 3, %3 ®as and changing the order of columns,
this can be written

Ly 1 1 1 |
z,* @’ oY1 !’12
‘? =0 ..0392
l L, 1 1 1
, 3 =7 _— val
k2 24 TiYd Ys

Similarly the tangent at J (y,, va, s y1) is given by

L1 1 1 1
[ n® & an w

=0 ... (13.3)

Ly 1 1 1

y4° zt 2394 ye

Hence applying the principle in § 2, we see that all the determinants

of the fourth order contained in the matrix

L, Ly 1 1 5
513 1’1‘} 0312 141 J
I
l’ e (18.9)
} L, Ly 1 1 H
| 3 ] sl o
z) KES LAY ZaY4

vanish tor Og the centre of the cenire-circle; that is, this matrix re-

presents Og.
Taking now a fifth line L; we readily deduce that the determinant

| L, Ly 1 1 1 |
-3 ) oy p— o2
l 1 N £2) T1Y1 Y1 i
o =0 (13.5)
L; L 1 1 1
x;® ¥s° ;? 5ys vit ‘
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represents a circle passing tkrough the five centres Oy of the centre
circles of the lines L, Lg, ... L;, taken in sets of tour; thatis, it is
the equation of the centre-circle C;.

Introducing a sixth line Lg we see that the six centre-circles C;
of the system L;. Ly, ... Lg, are concurrent at a point P for which all
the determinants of the matrix

‘ ) L, 1 1 1 ”
| o oy e ay W
\ i
| ‘ .. (13.6)
| |
l Ly Ly 1 & }

z¢” Z/ﬁs fﬂsa ZoYf o ’

vanish; that is, this matrix represents the point P

14. The equation to the tangent at 1 (e1, za, @g. %4 ;) to the
centre circle C- given by (13.6.) can now be shown to be

L1 1 11 ]
z* 2,° 2%y @y v,°
-0 (4
L; i 1 1
a5t z5° “’ss!/a -’Mls’ 953

while the tangent at ] (yq, g2, -0 ys) is

Ly 1 1 1 1
vt e @ty an’ 9°

|
{ i
’ b t=o (14.2)

!/54 T 5 Ys 2595 Ys
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Hence, for the centre, O;. of the circle Cs the determinants of the fifth

order contained in the matrix

L,
ot

e

|
|

|
| -
|

k3]
B
N

vanish.

L, 1
yl* zla
Ls 1
ys* a;®

3
5 Y5

Hence this matrix denotes Oj;.

B H

1% 7' |
i
oo (143)
|

1 1

ESVH] ¥s°

Taking now a sixth line L, we see that there exists a centre-circle

C, given by the determinant

L,
z*
L.

@t

15. The process can be continued for any number of lines.

take lines L,, Lg. ... L, the centre-circle C;

L, 1
y1* z®
Ls 1
?/04 s’

the determinant

|
|
|

O 1
e @

L, 1

-2 n==3

4
*17Yy

1.

3
5 Yo

—4,
="y

1 1
oyt o9’ ‘
=0 (14.4)
. . |
1 1
owd  ue |

If we

of the system is given by

‘ =0 (15.1)
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In this determinant if we suppress the row corresponding to any line L.,
the reculting matrix represents the centre O,_, of the centre-circle
formed by the remaining n—1 lines; while if we add a row, correspond-
- ingto a new line L, ,,, we get a matrix representing the point P,y
corresponding to the system of » + 1 lines.



« Space inside an Atom.”*
By S. V. RAMAMURTY, M.A,, 1.CS.

Bohr has worked out a theory regarding the structure of an atom,
The nucleus is considered as made up of a number of protons and elec-
trons. Round this there are revolving a number of electrons. Each elec-
tron moves in a circulir or elliptic path with a certain quantum number.
The quantum number is simply 1, 2, 3, 4 ... attached to the 1st, 2nd, 3rd,
4th ... orbits. Tt is possible for an electron to move from a path with one
quantum number to a path with another quantum number. Bat it is,
under the theory, not possible for the electron to move in between two
orbits with two successive quantum numbers. - Under Newtonian dynam-
ics, a particle moving in an orbit, if slightly disturbed, moves in an
orbit slightly removed—the degree of removal decending on the degree
of disturbance. But under the Bohrian theory, the electron if it changes
its orbit at all can only jump to a new orbit with a different quantum
number and not move io a slightly varied orbit. What is in between
different possible orbits is not known. We still continue to speak of the
inside of the atom as a three-dimensional space but it has got curious
gaps about the nature of which we have no information. The space in-
side an atom is pictured by Bohr as a discontinuous space.

Further Bobr bas found a relation between the radii of the succes-
sive circular orbits possible. The associated elliptical orbits (i.e, ellip-
tical orbits with the same quantum number asa given circular orbit)
can be derived easily from the circular orbits. The relation is that the

radii of the successive circular orbits vary as the squares of natural

numbers.
An obvious explanation of the discontinuous space of Bohr is that

itis some transformation of a continuous space.

¢ Read at the Fifth Conference of the Indian Mathematical Society,
Bangalore, 1926.
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Take a simple analogy.

Take a simple unit and go on measuring it on the z-axis Every
time it completes a measurement of itself, let a bright point of light be
placed. Then we get bright points of light at 1, 92,3, ... on the p-axis.

Wy

2

These points of light can be b}ought as near to each other as possible and
the z-axis can look as nearly as we desire as a continuous line of light.
Now erect perpendiculars at 1,9, 3, ... the perpendiculars being 1%, 2%, 3%...
These points lie on a parabolic curve. Even if we mark these points
on the y-axis, they lie on the y line at 1,4.9, 16... Thus if every time the
unit completes a measurement of itself on the z-axis, we cause a bright
point of light at the corresponding point on the parabolic curve or on the
y-axis, we get a series of bright points. This series is a discontinuous
series. However near we bring the points on the z-axis, the points on
the curve or on y-axis are bound to be.discontinuous.

Supposing the unit measuring itself on the z-axis is an atom, we
have on the z-axis a continuous string of atoms. If however we cannot
see the position of an atom but can see only the positions marked by the

squares of the numbers of the atoms, we see an arrangement of positions
87
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which is not continuous while actually the atoms are arranged continu-
ously.

Now coming back to the elections, we can not actually see electrons.
We do not actually peer inside an atom, we can only make statements
about electrons by watching results produced by electrons—results which
can be measured by our material senses ot instruments. When therefore
electrons are found to move in successive orbits with radii varying as
12.9% 3% ... and when we find that we know absolutely nothing of what is
in between the orbits and that the electrons themselves are quite un-
concerned with the in-between regions, the obvious deduction is that
what we are depicting as the motion of the electrons is not the motion
but a transformation of the motion just as the succession of bright
points on the parabolic curve or y-axis we have referred to is not the
motion of an atom which goes on measuring its length over and over
again but a transformation of that motion. What may this transforma-
tion be?

In my paper on ** Time, Space, Matter and Mind,” published in the
Journal of the Indian Mathematical Society, Vol. XV, Nos. 1 and 2,
I have held that the number of dimensions of a continuum is the number
of kinds of atoms of time, space, matter and mind that are contained in
it and thata continuum of time and space particles is two-dimensional.
Now inside an atom or matter, the only kinds of particles which exist
are time and space particles. Theretore the space inside an atom should
be on my theory two-dimensional and not three-dimensional as is now
held. Further I have obtained a relation ¢ = 7 as the relation between
time and space, where ¢ and r are small elements of time and space.
In a three-dimensional continuum of time, space and matter particles, let
r be an element of space. Transform this to time by the relation ¢ = %

We get a continuum of time in place of a continuum of space.

Now Bohr tells us that the radius of anatom is cut by orbits at
points at distances 12, 92, 3%...from the centre. Let the group of these
points be transformed by the relation ¢ = r%, We then get a radius of
¢ particles in place of a radius of r particles. The succession of dis-
continuous orbits get arranged into a succession of continucus orbits,
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Hence the transformation of space into time is just the transformation
which converts a Bohrian discontinuous set of orbits in to a set of conti-
nuous orbits. Thus my statement that the. inside of an atom is a
continuum of 2-dimensional time instead of 3-dimensional space is
corroborated by the Bohrian theory of intra-atomic orbits.

It is a myth to say that the inside of an atom is 3-dimensional. It
is 2-dimensional. The space inside an atom is flat.

‘What is the nature of this flat continuum ?

1 have shown in the previous paper referred to that in Euclidean
space of 3 dimensions,
=g+
and in space of 4 dimensions
2= g% + ys.
In Euclidean (or symmetrical) space of 2 dimensions,

r=gz+y.
Hence the # and y-axes are coincident lines.

If y=0, »r= =z A straight line has therefore ounly one direction
in 2-dimensional space.

Again compare the equation
r=gty
with the equation
r Ee =zty
for 4-dimensional space.

(Vide: ' Time, Space, Matter and Mind,” Journal of the Indian
Mathematical Society, Vol. XV, No. 2).

As ths z and y-axes are coincident in 2-dimensional space, © which
by comparison with the corresponding equation for 3-dimensional space,

vize . .
76" =&+ iy
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is seen to be the angle between =z and r, is zero.
Hence, r = z + y for 2-dimensional space is the same as

rES = o4 ¢ for 4-dimensional space.

In the latter we have 3 equations to describe different parts of it,

vis,
B = y+ oz
1EA6 =yANa,
rEAe =yAa

Thus 2-dimensional space is a section of 4-dimensional space.

As we proceed to lengths as large as planetary distances, our
3-dimensional space reaches the 4-dimensional space. As we proceed to
lengths as small as those inside an atom, our 3-dimensional space
reaches to 9-dimensional space. The latter is however a section of
4-dimensional space.

Hence it is seen that 3-dimensional space is the boundary between

two regions of 4-dimensional space.

Again, motion is a quality of matler. As there is no matter inside
the atom where there are only space and time particles, there is mo
motion inside the atom. The periodic motions perceived outside the atom
apparently exist in an integrated form inside the atom.

It seems to me that the mysteries of electricity and of the quantum
are involved in a study of a 2-dimensional space.






Notes and ‘Questions.

On a certain principle in Determinants.

1. The following theorem on determinants which is assumed in
the paper on " Miquel Points and Circles and Centre-circles of a System
of Linas” (Vol. XVI No 19, page 271 is proved here for ready reference.

If in @ matrix containing n + 1 rows and 1 columns two of the
determinants of the nth order contained in the matrix vanish, then all
the determinants of the nth order contained in the matrix vanish—
provided that inthe matrix of n— T-rows and n columns the contained

determinants of the (ﬂ‘— 1)th order do not all vanish.

2, Thus in the matrix

ay  ap e
b B
¢ o
M=
I ll ZE

with # + 1 rows and » columns let it be given that the determinants
obtained by suppressing the first and second rows are zero and that in

the matrix common to them, namely in

‘ ¢ g e w5 c"v

the contained determinants of the (n ~1)th order are not all sro. Then

all the determinants of the nth order contained in M vanish,
23
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To prove this, consider the determinant

2 By e @,
. 0y g « Cu
- . . . ave
Lol Iy

By hypothesis the minors of the terms in the first row are not all zero;
let them be denoted by X, X, Xg ... ... X,» Now, A vanishes when for
@y @ 23 -e X, We write first a; ag @5 ... a, and secondly by by bz «.e b,
‘This is from hypothesis. And A vanishes also when for x3 %y X3 ... X,
we write the elements in the third, fourth, ... or (n + 1)th rows, since
the resulting determinants have two rows identical. Hence we have the

following equations :(—
oX, + X, + .. +aX, =0
hX,+5,X + .. +5X,=0
aXiteX+ o te,X, =0

X+ L X + +1,X,=0

where X Xg .+t i X, are a set of quantities whick are not all zero. By

eliminating:them

from these equations taken » at a time, we get the pro-
+opérty-stafed.

3. The result is readily perceived to be true if its geometrical
significance is grasped Let us take, for example, a matrix of
5 rows and 4 columns. The elements of each row may be regarded
as the homogeneous co-ordinates of a point in ordinary space.
We have thus five points A, B, C, D and E whose co-ordinates
are (a; ag @3 az) ..o o (ey ey €3 es). When the determinant formed by
four rows vanishes, the corresponding four points are co-planar. Thus
by bypothesis the points BCDE and ACDE form two co-planar tetrads.
These two planes may be the same or different. In the former case the
five points are coplanar and hence every determinant of the fourth order
formed from the matrix of their co-ordinates vanishes. In the latter case
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the two planes have a line in common and, since C, D and E belong to
both the planes, they must lie on this line. In this case the co-ordinates
of any one of the three points, say of E, are the same linear combinations
of the co-ordinates of C and D. In other words, we have relations of the
type

6y = Aoy + ud,

eg = Aoy + ud,

63 = Aog + udg

es = Neg + pud,
and hence all the determinants of the fourth order formed out of the last
three rows vanish, This is the case excluded by the hypothesis.

V. RAMASWAMI AIYAR.

Indeterminate Equation of the First Degree,

§ 1. The process of solving indeterminate equations of the first
degree is simplified by a judicious use of a fairly common notation,
amounting to a definition, whereby the fraction b/a denotes an integer =
such

aww=b (mod. n)

provided a is prime to n. Fractions as thusdefined have a unique value,
in the sense that their equivalent integers are congruent to each other,
modulus #. This definition may be extended to cases where ¢ is not
prime to », but fractions of this type have not a urique value, and we
need not discuss them further, though we will have occasion to employ
them., We will call a fraction " one-valued,” if the denominator is prime
to the modulus, other fractions being called “ many-valued.”

§ 2. One-valued fractions combine according to the laws
bla = blla’ (o'd = ab'Yaa;

(bla) X (b'fe’) = ®b'/aal);

U]

n
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but (0/a) + (b'/a’) is mot a’bfab’, unless the latter fraction is also one
valued. It is also to be noted that a many-valued fraction (gb/ga)
g being a factor ot 5, is not congruent to the one-valued fraction (b/a).

The following results are easily seen to be true .—

(@) 8/e = b+ pn)/(a + qu), p and ¢ being any integers ;
(i) b/a = (kb)/ (ka), % being an integer prime to n ;
(iii) If b/a = dfs, then each is congruent to

(Ao + pd)/ e+ pc)

where A and 4 are any integers whatever, provided this fraction is also
one-valued.

§ 8. The application of the notation is best explained by a
numerical example, Let it be required to solve

59z — T8y = 2.

Taking 59 to be the modulus, we have

By =—2
="2__~2 _=2_~—1_~10_-2-(-10)_8_40
OF YET3TTs—s9 - 14 7 - 70 ° 13- —3-15
-9 —40 _
ST PRV LT
ivi =2 a3y + 9 =59+ 73
giving 2z 59 Y .

It may be verified that if we take73 to be the modulus, the smae
solution is obtained; for

2. 2 _ ¢ _ 8 _2+8 _10_10~73
TP —73+89 —14 ~56 59-66 3 — 3
—63
=3 =—21=53=152+ 73,

§ 4. No new principle is involved in this method, the only merit
of which is its comparative simplicity when dealing with large integers, 4
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point which must be carefully borne in mind is that though we may
at any stage multiply the, numerator and denominator by a number &
which is not prime to the modulus, and treat the resulting fraciion as if
one-valued, we cannot except in special cases, cancel out a common
factor f, if f is not prime to the modulus. For example, let the given
equation be
852 — 24y = 1.
Taking the modulus to be 24,

S 1_1x2_2_ 32 _ 2
TG TH R 0 T—8X % —2
One is apt to say at this stage that # = — 1, which is not correct.
The fact is that in removing the common factor 2, we have implicitly
diviiled the modulus also by 2. The correct procedure is to leave the
fraction as it is, and deal with it as if it were one-valued.

1 9 _ 9X17T _ 3¢ _ i+34 _

= =-"= LE =

=BT ToTaxIi -8i 5—sg o0 = 1S3

giving y = 16 + 35¢.

The justification for the procedure is simple, We leave it to the

reader to find it out.
BALAKRAM.

On the Reduction of the General Equation of the Second Degree.

Tn text-books on ‘ Conic Sections,’ the equation of the second degree
is reduced to its normal form by change of origin and axes. In the
following note the transformation is effected algebraically, the method
depending on the application of the following elementary identities :—

(@) @@+ )@+ m?)=(ad+ tmP + (am — blf,
8) (a® — ) (2 —m?) = (al — bm)f? — (am — bI)2,
and (Y) 40b.Im = (al + bl — (al — bm)?.

Let the equation be as usual

¢(;u,y)5awz+2hwy+by2+2gm+2fy+o=‘0‘
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Now suppos: one of the quantities a, b, say a, is not zero; then
o. ¢ (2y) = o’ + 2z (hy + ¢) + aby® V+ Qafy + ac
= (aw + hy + ¢ + Cy?—2Fy + B
=(w+hy+g?+C(Cy— FR+aeAaCl. (@

where B, C, F are the minors of the corresponding elements in

a h g
A= b b f
g [ e
Case 1. € > 0. Multiply (1) by C(? + n? and apply identity (a),
we have
a@FwdCola) =L+ M +al+md o . @
where
L= iVC.laz+hy+g+mCy—F
and M=mv¥C.laz+hy +g)— 1(Cy—F)

Itis clear form (3) that L = 0 and M = 0 are the equations to a pair
of conjugate diameters of the ellipse for all values of l:m, the axes

being inclined at any angle whatever.

Now choosing I:m so that the straight lines L = 0and M =0
are at right angles we reduce the equation to the normal form

X, Y
ateE=!
where X =0, Y = 0 are principal axes of thz conic,

Oase 2. € < 0. By using identity (3) we may reduce the equation
in this case in the same way asabove. If however we have no objection
to the use of imaginary quantities, this case can be brought under Case 1.
This may be seen by observing that (3) can be deduced from ‘u) by
putting mi and bi for m, b in (&)

Case 3. 0= 0. Tte method for this case is given in all standard

works and need mot be repeated here. (Vide Askwith: Analytical
Geometry of the Conic Sections., § 185, page 143),
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Oass 4. a=b=0, h #0. In thiscase
b ¢ (2, y) = %y + 2hgax + 2hfy + ok
= 2hz+ f)hy+ @)+ ck—2fg. ... B
Now multiply (8) by 2 Im and use identity (Y); we then have

2lm. .k ¢ (@ y) = L= M+ 2l (ch— 2fg)

where

L= l(hx-i-f) + m(fzjl/ + g)
and M=i(ha +f)l—mhy+g)

It is clear as before that L = 0 and M = 0 are a pair of conjugate
diameters for all values of l:m:m, The final step may be taken
as in Case 1.

The method employed in Case 4 may be extended to the first two
cases. Thus the whole problem may be made to depend on the use of (¥).

The method given above is perhaps longer than the one usually
given in text-book; it has however the merit of being a purely algebraic
reduction independent of geometric considerations.

Karnatak College, }
Dharwar,

B. B. BaaL



Solutions.

Question 1279.

(G. V. GURJAR) :—Let A and B be two peint charges at points
(—a, 0) and (a, 0). Theequation of the lines of force in the plane can

be found from
dy Y

where P is the point (2, y).

This equation admits of a solution in the form

=-— 4 ~_—- = constant.

Explain the method of solution.

Solution by S L. Malurkar and K. Satyanarayana.
Take the case of a number of point charges in a straight line at
points (a,, 0) and of magnitudee,.(s = 1, 2, ...).

The potential at a point P (z, y) is

V= 2 %  where rl=gz—_gi+ 4
Ti
8

The lines of force being orthogonal to the curves V = const, are

dy _ 9V / oV vl dy

dz dy dz 2 e, Or,

given by

2
7 re de
26,11
g
,rara
D N
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Taking e = 9,6, = ¢;, we obtain the differential equation given in
the question.

6 Y
—g
dTI Ty 7
——
dw jn_i'/(l—a.)
7 ond Te
S 8, (r, z— mz)
» " 7'2

8 Tl r.ﬂ

2 29 . w—a) (1——_%)
Sew(mr—;a,‘) :1' 75
5 {52
—5{3¥ )

The equation being exact, the lines of force are given are given by

Question 1425,

(B. B. Bac)):—If R, Ry, Ry, R, are the circum-radii of the four
similar triangles whose sides touch a circle of radius 7, show that

() Ry+R,+Rs3=R;
(2 Ry7'+ R+ Ry R =40
and (3) that the angles of the triangles are 2a., 28, 2y

tang, = 4 J'—R7 }i "
where R, T Rgl , etc.
24
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Solutions by N.P.Subramaniun and G. V. Krishnaswamy

If PQ, RS and TU be the tangents parallel to BC, CA, AB
respectively to the in-circle of the triangle ABC, then ABC, APQ, BRS
and CTU are the four similar triangles touching the circle I of radius 7.
Let ry, 14, 8nd 75 be the ex-radii of the triangle ABC.

Since in similar triangles corresponding lengths are proportional,
we have

Rz
R Ty

for r is the ex-radius corresponding to the Z A of the triangle APQ.

[

Hence R:R;:Re:Ry =

1.1,
7 73

T

o =

The relations (1) and (2) follow directly from
T 79 T3 T

and ry g+ rg—r =4R.
Lastly if a, b, ¢ be the sides of a triangle
1 1
tan? A_ (s—1) (s—2o) - (=0 s
M s(s—a) 1 1
(s—t) * (s—e)

_n—r =R1‘1-—-R_1
rstry R, 1+ RyL
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Since the angles of thé triangles are taken as 2a, 28 and 2Y

i 4 3 tan ¥ R‘-I — R Rg-l o R—l. R;,_l— R-l
na:tan~ :tany = L. — P
* RT+ Ry Ry '+ Ry ! Ry '+ Ry !

It should be noted that these relations will hold only if Ry, Ry, Rg, R
are taken so as to correspond to 7y, 7s, 73, 7, %.6., a8 the circum-radii of the
triangles APQ, BSR, CTU and ABC respectively. Otherwise they will
have to be replaced by others in which the R’s are interchanged.

Other Solutions by V. A. Mahalingam and B. Achyutaram Sastrs.

Question 1433,

(V. RAMASwAMY AIYER AND M. BHIMASENA Ra0) :—Two quad-
rangles ABCD, A’B/C'D’ are such that six sets of points like (BC A’D’)
are orthocentric. Prove that the six meets of their corresponding sides
(like BC, B/C’) and the six meets of their non-corresponding sides
(like BC, A’D') form a et of twelve points lying on a circle.

Show that the quadrangles are fixed when three vertices of the one
and the non-corresponding vertex of the other (as A, B, C, D') are given;
and show also how, when one of these quadrangles is given, the other
can be found.

Solution by A. A. Krishnaswami Aiyengar and T. R. Raghava Sastry
‘We shall first prove that such quadrangles exist,

Let ABCD' be any four points and let A/, B/, C’ and D be
the orthocentres of the triangles BCD’, CAD’, ABD’ and A’B/C
respectively. A rectangular hyperbola passes through these eight points ;
for the rectangular hyperbola through ABCD’ passes through the ortho-
centres of the above triangles as well. Hence denoting the co-ordinates
of A, B, C, D by (ka, k/a) (kb, k/b), etc. and the co-ordinates of A’, B/,
C/, D’ by (ka’, ¥/} ... ... etc. on the rectangular hyperbola zy — &2,
and noting that the co-ordinates of A’, the orthocentre of BCD’ are

k g . s .
(—k bed’, —erd’) with similar expressions for the co-ordinates of

B’, C’ and D, have the relations :—

= = e gbod’ e (1)
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We easily see from (1) that

ab=— etc.

1,1
g =T ag

Also from (1) we get easily abed .a’d'c’'d’ = + 1 whence we have
also

1 1
B o= b=~ Lt ete
o' = e be wa etc
Hence each of the 6 set of points like 7bc’d’ is orthocentric,
Now the equation of the chord BC is
s+bcy—kB+c)=0.
Hence the equation of any conic passing through the intersections
of BC and B/C/, BC ard A’D’, B'C’ and AD, A’D’ and AD is
{z+bcy—t®+0} {ztady—klat+ad}
+ AN {z+Vcy—LQ' + )} {etady—rt(a +d)}=0,

. ' 1 ' 1
But since b'c’ = — be and a'd = — ] the above equation re-
presents a circle if A = abcd. The equation of this circle is
(1-+abed) (® +¢?) —ke {2 a+abed 2 o'}
—ky{Z abc+ abed £ a'b’e’} =0

From the symmetry of the equation it is evident that it passes
the other eight points mentioned in the question.

When ABOD are given, if L is the orthocentre of ABC, its para-

. 1 .
meter is — —-, and the equation of DL is

abe
oy =t (—25)
—_—— =% i s
T abc¥ d abe/ *
But from (1) d’? is equal to — (%C Hence DL
z+ d’®y = 0. Since the equation of the tangent at D' is o + d'%y = gkd’
the construction for finding D’ is as follows ;—

is parallel to

Join L, the orthocentre of ABC to D and draw the tangent paralle
to DL to the rectangular hyperbola passing through ABCD. Then the
point of contact is D’.

The other points can then be easily determined. From (1)

abed = —(abed'P’.  Hence the consiruction is real if one of tha
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quantities @, b, ¢, d is opposite in sign to each of the others, (i.6.) if
one of the points lies on one branch of the rectangular hyperbola and
the other three on the other branch.

The equation (1) continues to hold when the signs of abod orof a’b'c’'d’
are simultaneously changed. Hence there exist pairs of associated
quadrangles (ABCD, A;B,C;D,); (A’B/C'D/, A';B',C/yD’,) of which
any one of the first pair and any one of the second pair have the relation
mentiored in the question.

We can prove that the six pairs of points like (BC, B/C’) and
(BC, A’D’) lie on a circle by elementary geometry as follows :

Let ABC be any triangle, D’ any point in its plane and the pedal
circle of D’ writ. the triangle ABC cut the sides BC, CA, AB in the

(o}

pairs of points (E, Eo), (F, Fo), (G, Go) as in the figure, where E. F, G
are the feet of the perpendiculars from D’ on the sides,

Let ED/, FD' anl GD’ cut the pedal circle again at E;, Fy, Gy,
respectively ; also let AE;, BF;, CGy, cut the circle again at E/, F/, G/
respectively.

Join EoE’ and let it cut D'F, D'G (produced, if necessary)atB’, C’

. respectively

We now, proceed to show that (ACB’D’) and (ABC’D’) are ortho-
centric quadrangles.

The quadrilateral B'E’AF is cyclic since BEA = EQI'::E1 and
B’I;A are right angles.
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: LA ~ A - A
Hence B'AF = B/E/F = FEE, = FD'C = compliment of FCD".
AB' is thus perpendicular to CD’ and by construction B'D’ is per-
pendicular to AC. Hence ACB’D’ is orthocentric.

Similarly, C/AG = C’E'G = GEB'= GD'B = compliment of
GBD,

.. AC/ is.perpendicular to BD' and by construction AB is pet-
pendicular to C’D’. ‘Hence ABC'D’ are orthocentric.

Thus, E,E’ passes through B/C’ the orthocentres of the triangles
D’AC and D’AB.

Similarly, we can prove that FoF’ and GoG’ pass respectively
through the pairs of points (C’, A’) and (A’, B') where A’* is the ortho-
centre of the triangle D’BC.

Since AE;, BF;, CG,, are respectively‘perpendicular to the sides
B'C/, C'A’, A’B' and the perpendicuiars from A’, B', C’ on. the sides
BC, CA, AB meet at D/, the straight lines, AE,, BF), and CG, must
also be concurrent at (say) D. ’

It is readily verifiéd from the figure that the pedal circle of D’ with
respect to the triangle ABC is also the pedal-circle of D with respect to
the triangle A’B/C/, and that the triangle ABC can be derived from the
triangle A’B’C’ with the help of the perpendiculars from D to the sides
exactly in the same way as the triangle A’B’C’ has been obtained from
the triangle ABC with the help of the perpendiculars from D’ on the
sides.

Hence, we may infer that A, B, C are the orthocentres of the
triangles DB'C/, DC'A’, and DA'B’ respectively for the same reason
that A/, B/, C/ are the orthocentres of the triangles D'B,C, D'CA,
D’AB. .
Thus the two quadrangles ABCD and A'B'C'D’ are associateds
in the manner described in the question and the twelve points
(E, Eo, Ey, E), (F, Fo, F1, F), (G Go, G;, G') all lie on the same ~
circle.

® A’ js not marked in the figure.



. " Questions for Sclution.

Proposers of Questions are vequesied to send their own solutions
along with their questions.

'_ N 1455, (K. V. VEDANTAM):—The director circle of the maximum
inscribed ellipse of a triangle is co-axial with its polar, circum-, and
nine-point circles.

1456, (V. RaMAswAMI AIVAR, M.A):—Given three directly
similar figuree F,, F,, Fa:

(1) I they do not bave a common double point, show that if

ABC be any triangle homothetic to the invariable triangle, the homothetic
centre deing ‘the director point, then, the triangle ¢ 8Y formed by any set

of corresponding points of the figures is in perspective with ABC ;

(9) If the figures have a common double point O, show
that another system of three directly similar figures F,’,Fo/,F3’, having
O for a common double point, exists, such that the triangle aBY formed
by any set of corresponding points of Fi, F,, Fg is in parspective with
the triangle a’8’Y’ formed by any set of coiresponding points of
Fy. F./, Fy. . n

1457. (A, A,-KRISHNASWASL_Y AYYANGAR) :—Show that the trili-
near equation of the Pascal line of the hexagon AC’BA’CB’ inscribed
in a circle is of the form

AA’ B'C'.a + BB/.C'A’.8+ CC'.A'B'.Yy =0
the tnang]e ABC being taken as the triangle of reference.

Hence deduce Steiner’s and Kirkman’s theorems on Pascal lines.

1458. (A. A* KRISHNASWAMI AYYANGAR) :—If any transversal
DEF cut the sides BC, CA, AB of a triangle at D, E, F respectively
so that ,

BC.BD + CA.CE + AB. AF

is constant (the cegments of the sides being measured 'positively the
same way round); show that the straight line DEF envelopes a fixed
tricusp inscribed in the triangle ABG.
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1450, (S. D. CHOWLA):—Prove that
(%) =1+ (3)° @n? +( 32 )% auy

/i /)8
+(B5 e+
where K:fz __d$

o VI=Fsin®

Fnd series for (%() ? and (2%) 4

1460. (S.D. CHOWLA),—Prove that
@ o302 —1 =0, ~1)+8¢{ e, (DS, (2 —2) +
$,@ 12—+ (DS, m—a)+ ... ..
where "'r(") denoting sum of rth powers of divisors of  and
S (n) =% 8ar .
where 8 = + 1 if d is odd, and is equal to (—-1)7‘71 if d is even,
eg, If 2n—1=7 13+ 15=(7+1+8{1.12+3.6+ 4.3}

() ) =S10n) + 8 [oy(Doy(n—1)+ S S1 (s — 2) g
+“](3)‘71("_3)+51(4)S](n—4)+...] 7

4
+ 4 { S, ?'; }2 {
where n is even, and ¢g (r) = sum of cubes of even divisors of
minus ths sum of cubes of odd divisors of n. ;!
eg., If n=238, *
8+ 4+ 2*—19=3+8[1.84+3.12+4.6] +4.32

1461. (T. R. RAGHAvA SAsTRY)'—Four straight lines touch a
circle of radius R, If 75,73 73 and ry are the radii of the cirevwm-
circles of the four triangles that can be formed by the four linesatd r
the radius of the circle passing through their circum-centres, shuw that

1 ) R '

T

(1)a(+++

Ta
(i) The distance between the focus of the parabola touching the
given four lines and the centre of the circle touching the same lines is

Vdar, where 44 is the lafus ractum of the parabola
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